A note on power domination in grid graphs

نویسندگان

  • Michael Dorfling
  • Michael A. Henning
چکیده

The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well known vertex covering and dominating set problems in graphs (see [T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, M.A. Henning, Power domination in graphs applied to electrical power networks, SIAM J. Discrete Math. 15(4) (2002) 519–529]). A set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph is its power domination number. In this paper, we determine the power domination number of an n×m grid graph. © 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On independent domination numbers of grid and toroidal grid directed graphs

A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...

متن کامل

Restricted power domination and fault-tolerant power domination on grids

The power domination problem is to find a minimum placement of phase measurement units (PMUs) for observing the whole electric power system, which is closely related to the classical domination problem in graphs. For a graph G = (V , E), the power domination number of G is the minimum cardinality of a set S ⊆ V such that PMUs placed on every vertex of S results in all of V being observed. A ver...

متن کامل

A note on Power Domination Problem in Diameter Two Graphs

The power domination problem aims to find the minimum number of phase measurement units (PMUs) required in order to observe the entire electric power system. Zhao and Kang [6] remarked that there is no known nonplanar graph of diameter two with a power domination number that is arbitrarily large. In this note, we show that the power domination number of such graphs can be arbitrarily large.

متن کامل

A Simple Algorithm for Solving the Power Domination Problem on Grid Graphs

The power domination problem is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V,E), the problem is to find a minimum vertex set P ⊆ V , called the power dominating set of G, such that all vertices in G are observed by the vertices of P . Herein, a vertex observes itself and all its neighbors, and if an observed vertex has all b...

متن کامل

Double Roman domination and domatic numbers of graphs

A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2006